Refinement of a Th₂Ni₁₇-Type Structure: CeMg_{1.03}*

BY QUINTIN JOHNSON AND GORDON S. SMITH

Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 18 January 1967)

The Th₂Ni₁₇-type structure found in the cerium-magnesium system has been studied by conventional single-crystal techniques. The space group is $P6_3/mmc$; unit cell constants are a=10.33, c=10.25 Å. The actual composition is CeMg_{10.3}; this is achieved mainly by substitution in the Th₂Ni₁₇ structure of two magnesium atoms for one cerium atom a certain percentage of the time. The agreement of this work with earlier work on a barium-magnesium compound but disagreement with earlier work on uranium-zinc and plutonium-zinc compounds indicates that structures of the Th₂Ni₁₇-type may actually be two (or more) closely related structures.

Introduction

The Th₂Ni₁₇ structure is a common A_2B_{17} structure which has so far been found for some of the combinations where A is one of the elements of the IIA, IIIB, IVB or VB groups and B is Be, Mg, Fe, Co, Ni or Zn. The prototype was studied by Florio, Baenziger & Rundle (1956), hereafter referred to as FBR, who reported a c/a ratio close to 1.0 and space group $P6_3/mmc$. They postulated a structure which they did not refine.

At about the same time, Goldish (1956) observed a presumably isomorphous phase in the barium-magnesium system. The structure proposed by Goldish differed from that proposed by FBR in being disordered; the composition also differed (BaMg~10·5). Later, Vold & Peterson (1961) reported a uranium-zinc compound which appeared isostructural but was found to have the space group $P6_322$. Their refinement was carried out by using only the reflections for which h-k=3nsince they found it necessary to assume a stacking disorder which would affect the other reflections.

There is a compound in the cerium-magnesium system which appears to be isostructural with Th_2Ni_{17} (Evdokimenko & Kripyakevich, 1963). When single crystals of this material were made available to us, we considered it worthwhile to carry out a structure refinement to try to clear up some of the questions concerning this structure. The details regarding the preparation of this material can be found in Wood & Cramer (1965).

Experimental

Single-crystal oscillation, Weissenberg and precession photos show that the space group, $P6_3/mmc$, observed for Th₂Ni₁₇ is probably correct for the cerium-magnesium compound. Careful diffractometer scanning along *hhl* was done to exclude $P6_322$, which is the space group observed by Vold & Peterson (1961) for hexagonal U_2Zn_{17} . The extinction condition, *hhl*, $l \neq 2n$, is obeyed for the cerium-magnesium compound; this was not true for U_2Zn_{17} . Lattice constants were obtained by a least-squares fit of powder data from a Cr $K\alpha$ ($\lambda = 2.2909$ Å) powder pattern. The pattern was not of a pure phase but exhibited a few weak lines of an as-yet-unidentified second phase. Cell constants are $a = 10.33 \pm 0.01$, $c = 10.25 \pm 0.01$ Å.

Intensities were recorded diffractometrically with zirconium-filtered Mo K α radiation ($\lambda = 0.7107$ Å). 193 independent reflections were recorded up to $2\theta \le 40^\circ$.

The structure proposed by FBR for Th₂Ni₁₇ was used for a starting place. Atomic scattering factors were those for the neutral atoms as listed in International Tables for X-ray Crystallography (1962), and a weighting scheme appropriate for diffractometric data (Smith & Alexander, 1963) $(w = F_o^{1/4}, F_o < A; w = A^{5/4}F_o^{-1}, F_o > A$ with A = 160) was used. A refined version of the Th₂Ni₁₇ structure gave a value of 12.7% for the conventional R index and temperature factors which varied from 0.3 to 3.4 Å². Since the temperature factor for Ce(1) (see Table 1) was 3.4 Å^2 and that of Ce(2) was only 0.7 Å², disorder was suspected. This was confirmed by a difference Fourier calculation. Peaks occur at $\pm 0,0,z$ with z=0.12 and at $\pm \frac{2}{3}, \frac{1}{3}, \frac{1}{4}$. The evidence indicated that Ce(1) should be replaced by a pair of magnesium atoms a certain percentage of the time. To a considerably lesser degree, a pair of Mg(4) atoms was replaced by a cerium atom. Additional atoms Mg(5) and Ce(5) were therefore added. For the leastsquares refinement, the occupancies of Ce(1) and Mg(4)were refined instead of their temperature factors; the latter were held constant to avoid parameter interaction and were set equal to 1.5 Å² on the basis of experience with Ce₅Mg₄₂ (Johnson & Smith, 1967). The temperature factors of Mg(5) and Ce(3) were also held constant and the occupancies were determined from the occupancies of Ce(1) and Mg(4) respectively.

The agreement index of this disordered model is $5\cdot3\%$ for the 157 observed data (or $7\cdot0\%$ for all data). This is to be compared with $12\cdot7\%$ for the ordered model. The final parameters for the disordered model are given in Table 1. Observed and calculated structure factors are listed in Table 2.

It is easy to conceive other refinement schemes. For example it could be argued that the z parameters for

^{*} This work was performed under the auspices of the U.S. Atomic Energy Commission.

Mg(4) and Mg(5) should be identical; or that Mg(2)and/or Mg(3) should be given additional freedom in the manner of the Goldish model (see discussion). It is not obvious that any useful purpose is served by their enumeration since they would only result in small changes in the parameters. Because of this, however, we feel it would be unwise to attach too much significance to the standard deviations given in Table 1.

Discussion

The composition of the crystal investigated is thought to be CeMg_{10·3} as determined by the results of the least-squares refinement. No chemical analysis was carried out because of the very small amount of material available. Although no attempt was made in the work of Wood & Cramer to investigate homogeneity range for this phase, it is conceivable that a range exists since it is structurally possible to accommodate an extended composition range with this model.

FBR suggested a way whereby it is possible to relate the ThMn₁₂, Th₂Ni₁₇ and Th₂Zn₁₇ structures to a CaZn₅-like subcell. Starting with an AB₅ (CaZn₅-like) lattice and replacing A atoms with pairs of B atoms aligned along the hexagonal axis it is possible to achieve ordered arrangements of various compositions. The ThMn₁₂ structure results from replacement of the A

Wuchoff

atom in two out of four subcells; Th_2Ni_{17} and Th_2Zn_{17} are two different arrangements which result by replacing A atoms in two out of six subcells. Other ordered as well as disordered arragements should be possible if the replacement scheme is more than just a coincidence. Thus the model which we propose for CeMg_{10·3} should not be viewed as complicated in any sense but rather follows as a logical consequence of the replacement scheme of FBR.

The coordination polyhedra of only two atoms, Ce(1) and Mg(3), are appreciably affected by the major disorder feature (substitution of two Mg(5) atoms for a Ce(1) atom). In both cases the change is to a higher coordination number with an arrangement already represented in the ordered structure. Ce(1) becomes like Ce(2); Mg(3) becomes like Mg(4).

Interatomic distances less than 4.5 Å are given in Table 3. Not included are short distances between atoms involved in the disorder which cannot both be present. The short Ce(3)-Mg(3) distance indicates that Mg(3) is probably displaced slightly when Ce(3) replaces Mg(4). Calculated standard deviations range from 0.003 to 0.021 Å.

The models of FBR and Goldish are compared with $CeMg_{10\cdot3}$ in Table 4. The FBR model with no disorder cannot be confirmed or disproved since there are no published data. The Goldish model differs primarily

Table 1. Final parameters*

(e.s.d.'s in parentheses)

Atom	notation	104 <i>x</i>	104 y	104 z	B (Å2)	Occupancy, %
Ce(1)	2 (<i>b</i>)	0	0	ł	1.5	69.5 (0.9)
Ce(2)	2(c)	ł	23	14	1.42 (0.02)	100
Ce(3)	2(d)	23	$\frac{1}{3}$	i di	1.5	1.5 (0.6)
Mg(1)	6(g)	$\frac{1}{2}$	Ō	Ó	1.93 (0.23)	100
Mg(2)	12(k)	1667 (5)	3335	205 (5)	1.67 (0.13)	100
Mg(3)	12(j)	3593 (7)	321 (6)	4	1.76 (0.12)	100
Mg(4)	4(f)	ł	2 3	8996 (10)	1.5	98.5 (0.6)
Mg(5)	4(<i>e</i>)	0	0	8882 (40)	1.5	30.5 (0.9)

* Temperature factors of Ce(1), Ce(3), Mg(4), and Mg(5) fixed at 1.5 Å². Occupancy of Ce(1) + Mg(5) = 100 %, and Ce(3) + Mg(4) = 100 %.

 Table 2. Observed and calculated structure factors

h K 🗜	Fo	Fc	h k l	Fo	Fc	h k 🕯	Fo	Fc	h k 🗜	Fo	Fc	h k <i>t</i>	Fo	Fc	h k l	۰۰Fo	Fc	h k &	Fo	Fc
002	118	-110	304	145	142	604	199	195	219	64	-65	611	31	27	420	15	13	334	108	102
004	341	352	305	ō	0	605	Ő	-2	310	11	2	612	12	-9	421	41	40	336	169	-172
006	134	-133	306	227.	-225	606	75	-75	311	41	40	613	47	- 44	422	15	-21	4 3 0		_0
008	228	228	307	ó	ò	607	0	2	312	10	-12	614	0	7	423	102	-100	4 3 1	14	-12
100	0	7	308	129	131	700	0	-14	313	65	-63	615	43	40	424	22	22	432	6	3
101	66	-63	309	ó	ō	701	9	-3	314	10	9	616	ō	- 3	425	22	20	433	29	จา้
102	18	-19	400	0	-9	702	ò	8	315	58	56	710	87	80	426		-3	434	ó	-2
103	93	89	401	9	-7	703	21	20	316	0	-3	711	Ó	2	427	60	-62	435	28	-29
104	13	14	402	ō	ò	704	0	-7	317	0	-7	712	101	-99	520	81	83	436	10	-5
105	78	-75	403	84	81	705	22	-20	318	0	3	713	10	-2	521	0	1	530	9	10
106	o	-7	404	8	5	800	0	3	410	100	98	714	43	37	522	113	-108	531	63	64
107	12	15	405	8	9	801	43	46	411	4	íı	810	25	16	523	-š	-1	532	9	-14
108	9	5	406	13	14	802	Ó	-10	412	135	-130	811	48	-49	524	26	31	533	73	-76
109	57	-60	407	44	47	803	80	-83	413	0	-1	220	286	302	525	0	1	534	10	13
200	12	18	408	10	ц	110	120	115	414	33	31	222	51	44	526	98	-102	535	63	67
201	77	76	500	0	14	112	161	-159	415	ō	Ö	224	177	175	620	13	13	630	101	104
202	21	-26	501	77	81	114	27	24	416	121	-121	226	17	-21	621	50	-54	631	0	-2
203	160	-158	502	22	-20	116	135	-139	417	9	0	228	122	126	622	13	-19	632	124	-120
204	32	29	503	94	-98	118	56	62	418	54	60	320	18	17	623	97	96	633	0	2
205	42	38	504	8	i7	210	17	17	510	29	20	321	82	-83	624	20	19	440	212	205
206	0	-1	505	85	85	211	77	-76	511	67	-67	322	20	-25	625	38	- 35	442	13	2
207	90	-92	506	9	-10	212	25	-26	512	23	-25	323	97	101	720	20	12	444	128	130
208	21	27	507	36	-36	213	101	97	513	84	83	324	19	21	721	34	35	540	19	17
209	28	22	508	0	9	214	15	21	514	16	22	325	87	-88	722	17	-15	541	47	- 47
300	243	250	600	286	291	215	84	-84	515	76	-73	326	9	-13	723	45	-46	542	17	-21
301	6	-1	601	0	-3	216	8	-12	516	13	-15	327	36	35	330	181	177	543	61	58
302	277	-280	602	43	-47	217	27	25	517	33	30	328	0	11	332	202	-203	544	14	19
2 ^ 2	7	1	602	•	2	1 2 2 2	•	10	610	~	2	1								

in the population parameters as well as in the fact that Mg(2) and Mg(3) have been given additional freedom.

The parameters of Table 1 were used to calculate an agreement value for the h0l data obtained by Goldish for the barium-magnesium compound. Refining only the scale factor yields a value of 6.0% which is to be compared to his value of 10.1% for the same data. When all adjustable parameters are allowed to vary, the population parameters for Ba(1) and Ba(3) become

	Ligancy	Distance
Ce(1)	6 Mg(3)	3·557 Å
	[2 Mg(5)]	3.709]
	6 Mg(2)	3.799
	6 Mg(2)	4.073
Ce(2)	2 Mg(4)	3.592
	6 Mg(3)	3.649
	6 Mg(2)	3.797
	6 Mg(1)	3.932
Ce(3)	6 Mg(3)	3.14
	6 Mg(1)	3.932
	6 Mg(2)	4.071
Mg(1)	4 Mg(2)	2.989
,	4 Mg(3)	3.045
	2 Mg(4)	3.155 or 2 Ce(3) 3.932
	2 Ce(2)	3.932
Mg(2)	2 Mg(1)	2.989
	2 Mg(2)	3.013
	2 Mg(3)	3.102
	2 Mg(3)	3.172
	1 Mg(4)	3.228 or 1 Ce(3) 4.071
	$1 \operatorname{Ce}(2)$	3.797
	1 Ce(1)	3.799 or $1 Mg(5) 3.127$
	$1 \operatorname{Ce}(1)$	4.073] [1 Mg(5) 3.277
Mg(3)	2 Mg(1)	3.045
	1 Mg(3)	3.047
	2 Mg(2)	3.102
	2 Mg(2)	3.172
	1 Mg(3)	3.239
	2 Mg(4)	3.498 or 1 Ce(3) 3.14
	$1 \operatorname{Ce}(1)$	3.557 OF 2 Mg(5) 3.829
	$1 \operatorname{Ce}(2)$ 1 Mg(2)	3.043
	$1 \operatorname{Mg}(3)$	4.043
Mg(4)	1 Mg(4)	3.007
	3 Mg(1)	3.122
	5 Mg(2)	3.220
	$1 C_{e}(2)$	3.507
$M_{-}(5)$	$1 \cup C(2)$	3 3 7 2
Mg(S)	$1 \operatorname{Mg}(3)$	2.032
	$3 \operatorname{Mg}(2)$	J-147 2.777
	$\frac{1}{1} Ce(1)$	3.709
	6 Mg(3)	3.829

65% and 0.2% respectively resulting in a composition of BaMg_{10.7} although the actual ratio is a sensitive function of which and how many reflections are included in the refinement. In any event, the indication was clear that the CeMg_{10.3} model is a better description for the data of Goldish than the one he proposed although the structural difference is not large.

On the other hand, for the same set of reflections, but using the data of Vold & Peterson for U_2Zn_{17} , the corresponding value is 19.8%. For all observed data, the R index is 18.5% and for all data, a value of 27.4%is obtained. Recent work in this laboratory with a plutonium-zinc compound of similar composition gives equally poor results with this model (Cramer & Wood, 1967). The results of these refinements, taken together with the fact that two different space groups are involved, indicate that the so-called Th₂Ni₁₇ structure may actually be of two (or more) types upon close inspection. Although the composition of the material for which we have the most knowledge differs considerably from the 2:17 composition and the true structure of Th₂Ni₁₇ itself must be regarded as unknown in fine detail, there does not at present seem to be any merit in changing the long established habit of saying that these have a Th₂Ni₁₇-type structure so long as one understands that this is a simplification of the real picture. As more is discovered about these phases, a further differentiation may someday become useful.

We wish to thank D. Wood for samples and V. Silveira for powder photography.

References

- CRAMER, E. M. & WOOD, D. H. (1967). J. Less-Common Metals, 13, 112.
- EVDOKIMENKO, V. I. & KRIPYAKEVICH, P. I. (1963). Kristallografiya, 8, 186.
- FLORIO, J. V., BAENZIGER, N. C. & RUNDLE, R. E. (1956). Acta Cryst. 9, 367.
- GOLDISH, E. (1956). Dissertation, California Institute of Technology.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JOHNSON, Q. C. & SMITH, G. S. (1967). Acta Cryst. 22, 360.
- SMITH, G. S. & ALEXANDER, L. E. (1963). Acta Cryst. 16, 462.VOLD, C. L. & PETERSON, D. T. (1961). Report no. IS-246, Ames Laboratory.
- WOOD, D. H. & CRAMER, E. M. (1965). J. Less-Common Metals, 9, 321.

Table 4. Comparison of structures

Occupancies given in percentages

Florio <i>et al</i> (1956) Th	This work $\begin{cases} Ce(1) & 70\% \\ Mg(5) & 30 \end{cases}$	Goldish (1956) Ba 55 % } Mg 45 }	Comments on Goldish structure Same sites, occupancies differ.
Th Ni	Ce(2) 100 Mg(1) 100	Ba 100 Mg 100	
Ni	Mg(2) 100	$ \left\{ \begin{array}{cc} Mg & 50 \\ Mg & 50 \end{array} \right\} $	Two 12-fold positions with slightly different
Ni	Mg(3) 100	Mg 25 Mg 70	Two 12-fold positions with slightly different
Ni	$\begin{cases} Mg(4) & 98.5 \\ Ce(3) & 1.5 \end{cases}$	Mg 90 Ba 10	Same sites, occupancies differ.